

ParaFishControl New Diagnostic Methods and Tools for Parasitic Diseases

ParaFishControl Final Conference

"Innovative Strategies to Control Parasites in Aquaculture Farms"

- Brussels, 11th March 2020

Oswaldo Palenzuela, IATS-CSIC oswaldo.palenzuela@csic.es

Table of Contents

- 1. Diagnostics Approach in PFC
- 2. Examples of new tests and methods developed
- 3. A look ahead: Repository of Diagnostic Methods generated in PFC
- 4. Main contributors

Diagnostics Approach in PFC

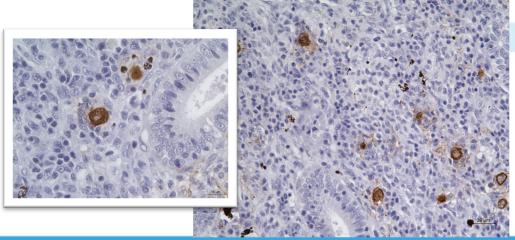
WP4 covering "Diagnostics"

General objective

- To provide an essential diagnostics toolbox and a collection of diagnostic protocols for the main aetiologies involved in parasitic outbreaks in European aquaculture production.
- Different aetiologies, different needs and approaches:
 - Harmonization and validation of reference methods, for selected parasites (T4.1).
 - Generation of quick point-of care tools for diagnosis of parasites whose management can improve with such (T4.2).
 - Development of assorted tests and markers for environmental monitoring, risk assessment, epidemiology & life cycle research, strain identification, virulence markers, vaccination assessment, etc. (T4.3 & 4.4)
 - Collection of parasite diagnostics protocols repository (T4.5)

Tetracapsuloides bryosalmonae

 Reviewed methods & compared reproducibility of procedures and tests on reference (blinded) samples in different laboratories – qPCR and IHC.

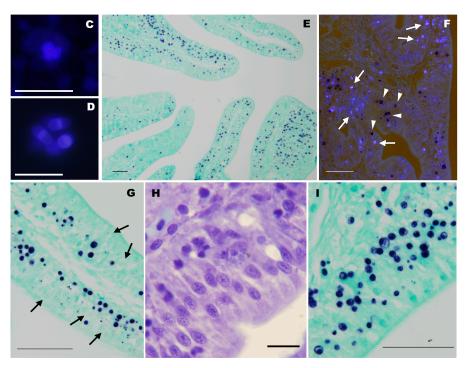


Slide no	Α	В	С	D	Original
1	Pos/low	Pos/++	Pos/+	Pos/+	Pos/+
2	Neg	Neg	Neg	Neg	Neg
3	Pos/high	Pos/+++	Pos/+++	Pos/+++	Pos/++
4	Pos/high	Pos/+++	Pos/+++	Pos/++(+)	Pos/++
5	Neg	Neg	Neg	Neg	Neg
6	Pos/high	Pos/++	Pos/++	Pos/+++	Pos/+++
7	Pos/Low	Pos/+	Pos/(+)	Pos/++	Pos/++

Sample	Laboratory							
	Α	В	С	D	E			
1	26.93 ± 0.14	29.62	27.84	26.4	28.7			
II	35.65 ± 0.13*	-	-	37.8**	0			
III	21.4 ± 0.13	23.68	20.72	21.6	20.1			
IV	23.08 ± 0.27	31.79	24.99	23.9	25.1			
V	34.21 ± 0.3*	-	37.88**	0.0	0			
VI	21.37 ± 0.32	23.56	18.95	18.9	22.7			
VII	26.22 ± 0.11	25.21	23.45	26.2	24.2			

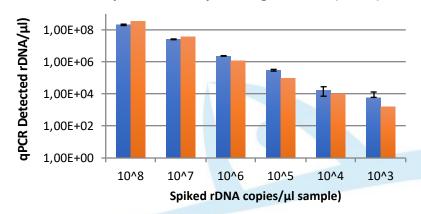
^{*} Contamination reported by the lab

 Developed new Mab against P14G8, a trout stage-specific antigen. Good reference test (IHC)



^{**}interpreted as negative by the laboratory

Enterospora nucleophila

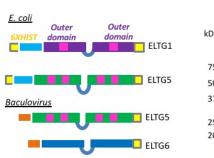

Developed new tests (qPCR and ISH)

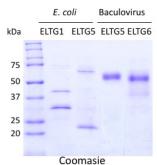
Compared reproducibility of qPCR test • on reference (blinded) samples in different laboratories (6 participants)

E. Nucleophila rDNA copies in 1g intestine (EtOH)

Attempted PoC tests (LFD devices): failure to obtain NGS —omic data and identify diagnostic candidate targets

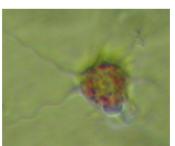
Enteromyxum spp.


ParaFishControl

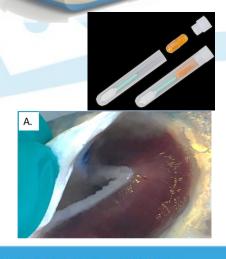

Attempted PoC tests (LFD devices)

- Selected candidate targets from NGS data. >14,000 transcripts shortlisted to 6 proteins expressed in both spp (unknown role)
- Genes cloned and sequences verified, 3 targets selected
- Immunogenic peptides designed (synthetic
 22-29 aa). Pabs and Mabs screened ⋈
- Recombinant antigens designed and produced in different expression systems.
 Pabs and Mabs screened- ⋈

 One recombinant antigen redesigned, Pabs screened, Mabs just finished, being checked for specificity



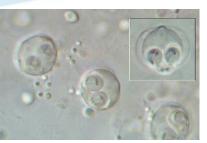
(Neo)Paramoeba perurans



 Reviewed methods (qPCR) & compared reproducibility of tests on reference (blinded) samples in two laboratories.

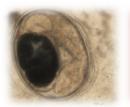
- Point-of-Care test based on LAMP assay developed
 - Dirty-cheap sampling methods (Non-Lethal). 15 minutes pre-processing from swabbing to LAMP,
 - Sensitivity roughly 1 amoeba per sample
 - Internal control for sample quality prevents false negatives due to quick sample preparation
 - Clinical validation: 100% positives when gill score >3, correlation between score and amplification
 - Cost about 2.8 Eur/sample (roughly 37% of Taqman test)

New tests developed

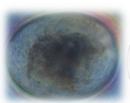

ParaFishControl

- Philasterides dicentrarchi quantitative detection in fish &
 seawater (qPCR). Sensitivity 2 cell/L.
- Tools for genotyping & serotyping of different isolates

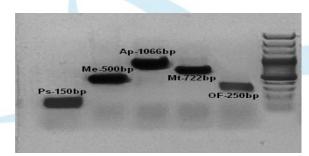
- Carp Myxozoans:
 - Telohanellus kitauei intestinal giant-cystic disease of carp (new in Europe from Koi, uncertain distribution) – New highly specific Taqman qPCR for detection in fish, invertebrates, and environmental samples
 - Sphaerospora molnari Gill & skin sphaerosporosis of carp. New Taqman qPCR and optimization for environmental samples and in vivo / in vitro proliferation studies.


New tests developed

 Whole-genome screening for discriminating pathogenic Saprolegnia parasitica and Saprolegnia diclina from non-pathogenic genotypes. New highly specific tests for both species in fish & environmental samples (qPCR). Sensitivity roughly 2 spores/L



 New multiplex PCR to detect and discriminate fish-borne zoonotic trematodes (Opisthorchiids and Heterophiyds) in fish or fish products



Ps=Pseudamphistomum truncatum, Me=Metorchis spp., Ap=Apophallus spp., Mt=Metagonimus, OF=Opisthorchis felineus. Molecular marker 100 bp.

Diagnostic Procedures and Protocols for Parasitic Diseases

D4.5: Collection & repository of recommended protocols for parasite diagnosis in European aquaculture

- Diagnostic methods & tools reviewed and developed in the project
- Additional procedures for relevant parasites not covered in PFC

Output to be published as ebook: "Parasites in European Aquaculture: A Diagnostics Approach" – Springer

- Open Access ebook
- 250 pp
- Targeting Q1, 2021

Main Contributors of WP

IATS-CSIC (Enterospora & Enteromyxum tests, WP coordination) SIATS CSIC

- **UNIBO** (Zoonotic metacercariae tests)
- Institute of Parasitology-BCAS (Thelohanellus kitauei & Sphaerospora molnari tests)
- **USC** (*Philasterides dicentrarchi* tests)
- UNAB (T. bryosalmonae tools, Saprolegnia tests)
- **CEFAS (Neoparamoeba perurans tests)**
- **UoS** (Neoparamoeba perurans tests)
- **INGENASA (LFD devices & Interproficiency tests)**
- **Vertebrate Antibodies Ltd (Mab production & characterisation)**
- **Futuregenomics (NGS)**

Thank You

Oswaldo Palenzuela oswaldo.palenzuela@csic.es

