

New treatments for parasitic diseases in European aquaculture farms

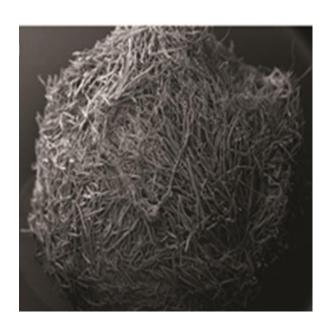
Kurt Buchmann P9 KU and Niels Lorenzen P5 DTU

ParaFishControl Final Conference

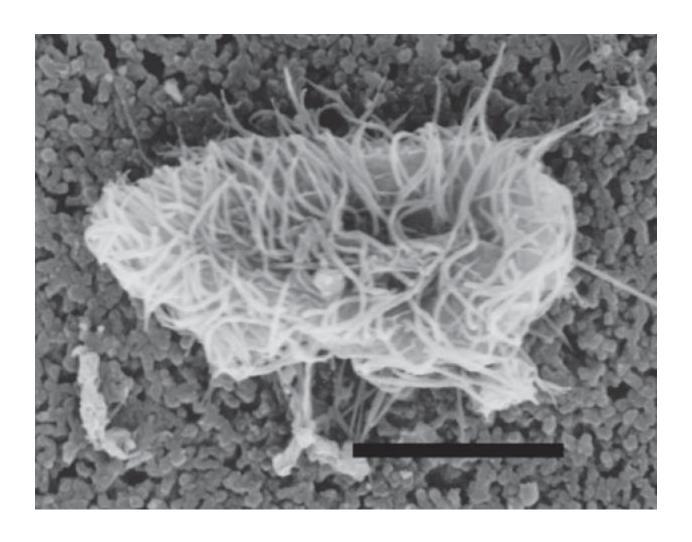
"Innovative Strategies to Control Parasites in Aquaculture Farms"

Brussels, 11th March 2020

Fish species within Parafishcontrol



Saprolegniosis: a threat to aquaculture and natural fish stocks

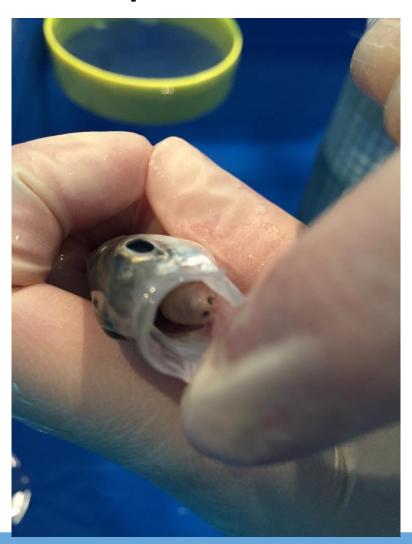


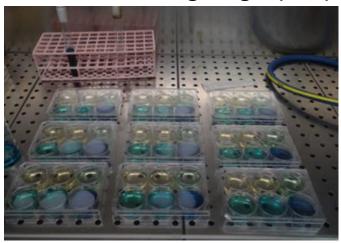
Caused by the oomycete Saprolegnia spp. Compounds tested by PI3 UNIBO

Scuticociliate Philasterides

Testing compounds against Ich by P9 KU, P8 INIA and P10 MTA

Tested against infective stages (theronts) of *Ichthyophthirius multifiliis*


Sparicotyle by P6 HCMR and P19 Skretting


IOR P7: Testing new compounds against Ceratothoa oestroides pulli

UNIBO Methodology

Protocol I: screening in agar (MIC)

Protocol II: screening in water (MLC)

Tested strains

- reference strain of Saprolegnia parasitica (CBS 223.65 provided by CSIC-RJB Madrid, Spain) isolated in Holland from northern pike (Esox lucius)
- field strain of *S. parasitica* (ITT 320/15/20) isolated in Italy from brown trout (*Salmo trutta fario*)
- field strain of Saprolegnia delica (ITT 290/15/15) isolated in Italy from rainbow trout (Oncorhynchus mykiss)

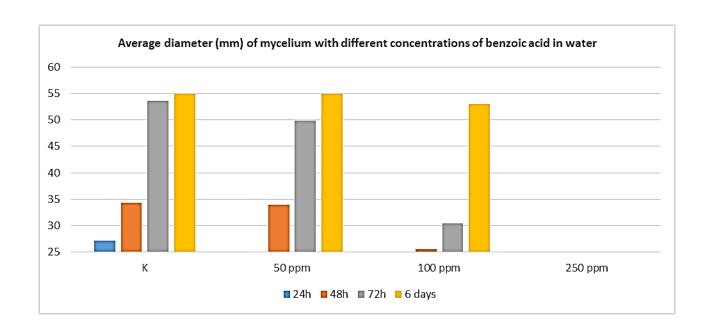
Tested compounds / concentrations

Tested molecules

acetic acid, benzoic acid, boric acid, iodoacetic acid, lactic acid, oxalic acid, tartaric acid, hydrogen peroxide, sodium percarbonate

Commercial products

Actidrox[®], De Marco, Italy
Detarox AP[®], Perdomini, Italy
Virkon S[®], Dupont, UK


malachite green used as a reference compound copper sulfate added because widely used to control saprolegniosis in aquacultured fish

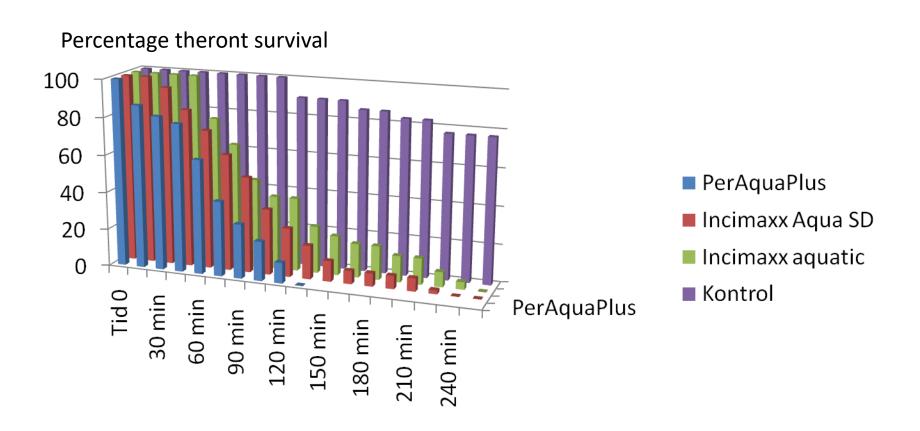
Tested concentrations

0.1; 1, 5; 10; 50;100; 250; 500; 1000 and 5000 ppm

Example showing effects of benzoic acid in water on mycelium

UNIBO

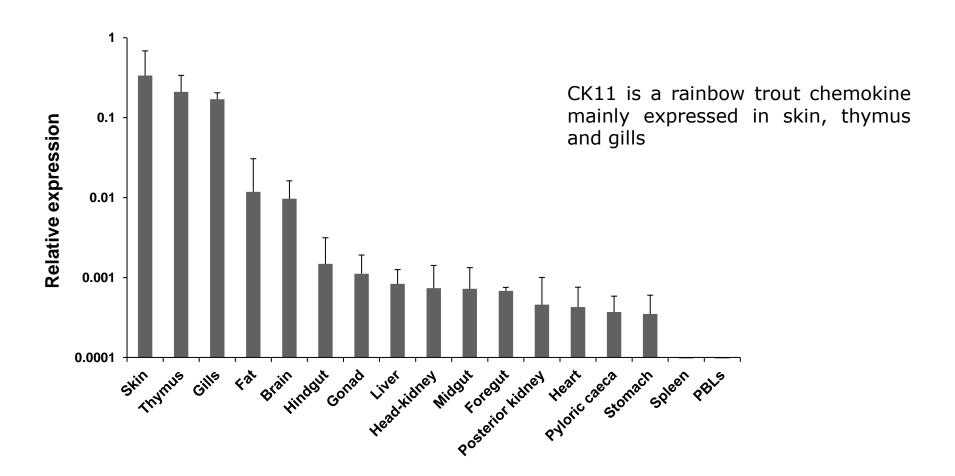
Tested compounds / concentrations

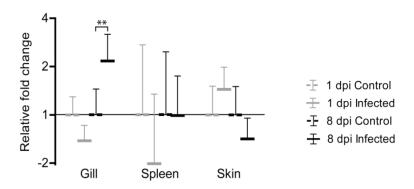

2',4'-DIHYDROXYCHALCONE
7-HYDROXYFLAVONE
CAMPHOR (1R)
DIALLYL SULFIDE
ESCULETIN
EUCALYPTOL
PALMATINE CHLORIDE
PIPERINE
PLUMBAGIN
SCLAREOLIDE
UMBELLIFERONE
USNIC ACID

COMPOUND	MIC (mM)
263 Zinc pyritione	0.01
67 Butoconazole	0.1 (only for 320 strain)
99 Clotrimazole	0.1
91 ciclopiroxolamine	0.1
100 -5-chloro-8-hydroxyquinolone	0.1
(Cloxyquin)	
132 econazole nitrate	0.1
288 Sulconazole nitrate	0.1
114 Dequalinium chloride	0.1
310 Triclosan	0.1
300 tetrametiylthiuram disulfide (thiram)	0.25
68 Butyl4-hydroxybenzoate (butil paraben)	0.25
95 Climbazole	0.25
169 Hexetidine	0.25 (only for CBS strain)
314 Undecylenic acid	0.25
67 Butoconazole	0.25
65 Bronopol	0.25 (only for 290 strain)

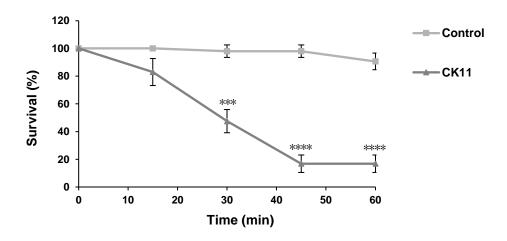
Compounds from ZF-S tested in vitro against Ich by P9 KU and P10 MTA

	Stoc		max effective	tested
Compound	k	Screening	dilution	dilutions
Gompound	10	0.5-0.0001mM	diffaction	anac.ono
Biotin	mM	of stock	100	25-100
Chrysanthe	10	0.5-0.0001mM	.00	20 .00
mic acid,	mM	of stock	100	25-100
Nitarsone	08	0.5-0.0001mM		
VETRANAL	mM	of stock	100	25-100
	10	0.5-0.0001mM		
Eucalyptol	mΜ	of stock	100	25-100
	10	0.5-0.0001mM		
Ronidazole	mM	of stock	100	25-100
	10	0.5-0.0001mM		
Secnidazole	mM	of stock	100	25-100
	10	0.5-0.0001mM		
Psoraldine	mM	of stock	100	25-100
	10	0.5-0.0001mM		
Tinidazole	mM	of stock	200	50-200
Dimetridazo	10	0.5-0.0001mM		
le	mM	of stock	200	50-200
Metronidazo	10	0.5-0.0001mM		
le	mM	of stock	200	50-200
	10	0.5-0.0001mM	750	100 750
Nifursol	mM	of stock	750	100-750
	10	0.5-0.0001mM	750	100 750
Resveratrol	mM I0	of stock 0.5-0.0001mM	750	100-750
C		of stock	10000	2000 10000
Conessine	mM I0	0.5-0.0001mM	10000	2000-10000
San zuinauina	mM	of stock	15000	3000-15000
Sanguinarine	10	0.5-0.0001mM	13000	22000-
Tomatine	mM	of stock	40000	40000
Tomatine	1111111	OI SLOCK	1 0000	T0000


Peracetic acid: Effects on theronts 0.08 mg/l

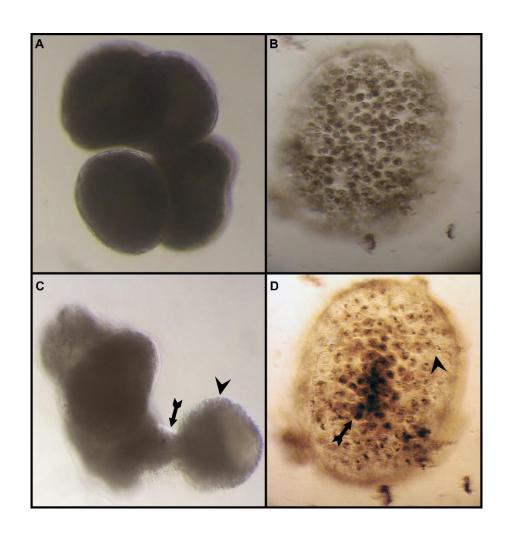

Field tests using peracetic acid conducted in rainbow trout farms

- Both traditional earth pond systems and partly recirculated systems tested – total 5
- ▶ One pulse: 0.5 to 1.0 ml per cubic meter water
- Effective but reinfection occurs
- ▶ 6-8 pulses per day
- ▶ Twice a week
- Effect lasts for a week


P8 INIA testing antiparasitic activity of rainbow trout chemokines

Effect of CK11 on Ich (P8 and P9)

CK11 transcription is induced in gills in response to Ich



CK11 can affect the viability of Ich theronts

P29 KNAW and P9 KU showed that also bacterial compounds are effective against ICH

Pseudomonas lipopeptides solubilize ICH membrane constituents

P9: Also aqueous extracts of herbs such as garlic, oregano and thyme eliminate ICH parasites

P11 USC Philasterides: testing compounds

Products to be tested

74

Products already tested by our group

- 0106: Curcumine
- 0125: Dimetridazole
- 0207: Metronidazole
- 0273: Resveratrol
- 0274: Romidazole
- 0037: Artemisinin
- 0301:Timidazole

Experimental work

- -1. Test toxicity in living ciliates at 100 µM. 37 products were toxic
- -2. Among the 37 products, a second selection was made based on toxicity for animals (based on literature review), toxicity for RAW 264.7 cells and toxicity for *Philasterides* (tested in the lab).
- -3. Nine products were selected for a more detailed evaluation

Products of natural origen tested against *Philasterides*, but toxic for RAW cells MTT/Propidium iodide (IP)

2'-4' dihydroxychalcone	002	17,49 μΜ	+	+
Conessine	102	17,61 μΜ	+	+
Piperine	249	67,13 μΜ	+	+
Plumbagin	25 I	28,12 μΜ	+	+
Tomatine	306	33,73 μΜ	+	+
Usnic Acid	315	68,25 μΜ	+	+

Products used as food additives

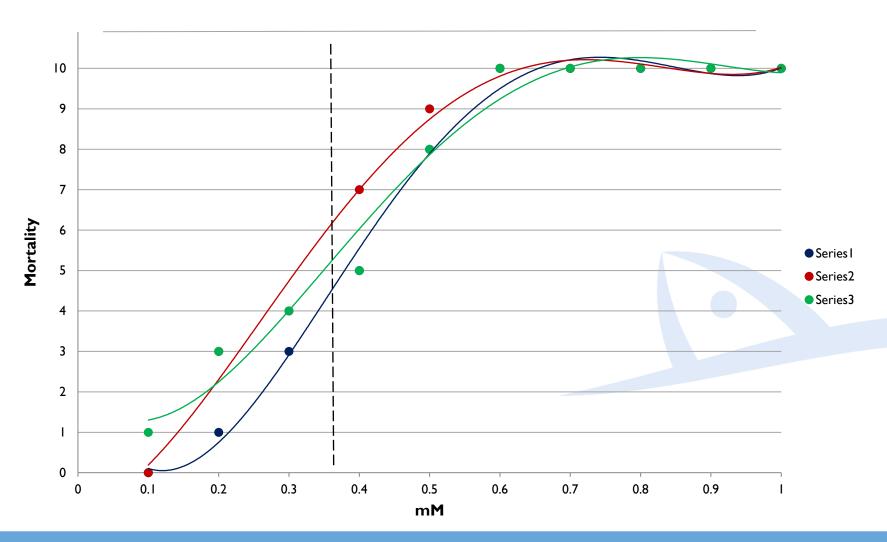
Product	Code	IC50 24 h	Toxicity Philasterides	Toxicity RAW/MT T
Butyl 4- hydroxybenzoate	68	67,55 μΜ	+	-
4'-hexylresorcinol	170	66,59 μΜ	+	+
Sclareolide	280	46,05 μΜ	+	-


P19 SKRE and P6 HCMR

Effect of functional feeds against Sparicotyle chrysophrii in sea bream

- Cohabitation challenge model: Experimental cages inside concrete tank. Flow-through open system. Donor infected fish from affected farm introduced in tank outside cages (I:I)
- May to August 2017: Temperature from 23.5°C to 28.7°C
- Naïve sea bream: 30 g: 60 fish/cage
- 3 treatments in triplicates; I control and 2 experimental diets
- Experimental diets based on combination of natural ingredients with anti-parasitic effect and extra nutritional support for the fish

Testing compounds for effects on Ceratothoa pulli in vitro



	LD50
Compound	mM
EUCALYPTOL	0,35
GARLICIN 80%	0,57
AURAPTENE	0,36
BITOSCANATE	0,29
CAMPHOR	0,28
(+)-TRANS-	
CHRYSANTHEMIC ACID	0,44
CLOSANTEL	0,28
DIALLYL SULFID	0,26
CEDROL	0,29
DORAMECTIN	0,37
MONOCROTALINE	0,32
MOXIDECIN	0,33
CURCUMIN	0,44

Example using eucalyptol against Ceratothoa

Conclusion

- A wide range of natural and synthetic compounds were tested for effects against the main European fish parasites
- Many are effective but most of these are toxic to fish
- Some will be investigated further and may be licensed
- Some compounds are non-toxic and environmentally friendly
- Efforts are under way to produce the novel compounds in large scale to the benefit of the aquaculture industry

Thank You

