

# Alternative Treatments against Saprolegnia

ParaFishControl Final Conference: Innovative Strategies to Control Parasites in Aquaculture Farms

11th March 2020

Perla Tedesco, University of Bologna

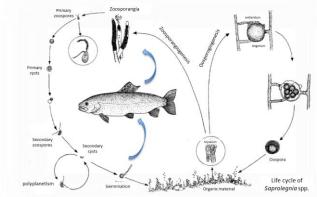


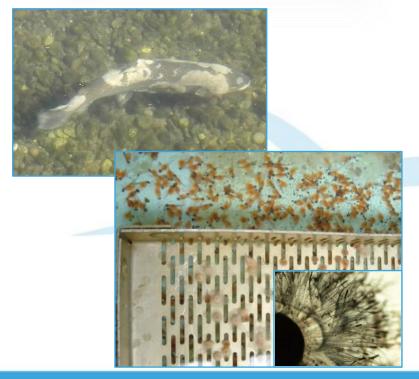
## **Table of Contents**



- 1. Challenge and impact in the industry
- 2. Our approach Our team
- 3. Our proposed solution
- 4. Expected benefits for the industry
- 5. Current status, next steps and conclusions

# 1. Challenge and Impact


#### **Challenge**


- Saprolegnia infections are among the main parasitic diseases causing economic losses in salmonid aquaculture
- The lack of alternative treatments with effectiveness comparable to the banned malachite green or other hazardous compounds, urges the identification of new molecules active against this pathogen
- Our research focused on an in vitro screening aimed at assessing new and alternative treatment strategies directly targeting Saprolegnia, to replace the use of hazardous chemicals

### **Challenge**

This research will provide preliminary information for the selection of more environment-friendly, safe and cost-effective compounds to be used within an IPMS.



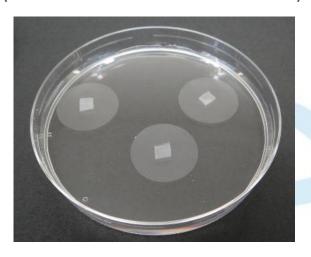






# 2. Our approach - Our team




### In vitro SCREENING of 62 compounds

### Methodology

PROTOCOL 1: test in agar
(Minimum Inhibitory Concentration)



PROTOCOL 2: test in water
(Minimum Lethal Concentration)

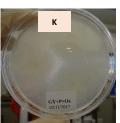


### Team involved in the development

Laboratory of Mycology Staff, Department of Veterinary Medical Sciences,
University of Bologna



# 3. Our proposed solution (I)




### rapid to implement treatments

benzoic acid and iodoacetic acid showed the lowest MIC/MLC, respectively;

acetic acid and peracetic acid-based products, particularly in combination with hydrogen peroxide, represent promising candidates for controlling saprolegniosis, due to their effectiveness associated with low environmental impact







 Received: 13 July 2018
 Revised: 1 October 2018
 Accepted: 4 October 2018

 DOI: 10.1111/ifd.12923
 Accepted: 4 October 2018

#### ORIGINAL ARTICLE



In vitro activity of chemicals and commercial products against Saprolegnia parasitica and Saprolegnia delica strains

Perla Tedesco 💿 | Maria Letizia Fioravanti | Roberta Galuppi

|                        | MIC     |         | MLC     |         |         |         |
|------------------------|---------|---------|---------|---------|---------|---------|
| Compound               | A (ppm) | B (ppm) | C (ppm) | A (ppm) | B (ppm) | C (ppm) |
| Malachite green        | 5       | 5       | 5       | 5       | 5       | 5       |
| Copper sulphate        | 250     | 250     | 250     | 1,000   | 5,000   | 5,000   |
| Acetic acid            | 250     | 250     | 250     | 250     | 500     | 500     |
| Benzoic acid           | 100     | 100     | 100     | 250     | 250     | 250     |
| Boric acid             | 1,000   | 1,000   | 1,000   | 2       | a       | 2       |
| Iodoacetic acid        | 250     | 250     | 100     | 50      | 50      | 100     |
| Lactic acid            | 500     | 500     | 5,000   | 500     | 500     | 1,000   |
| Oxalic acid            | 500     | 500     | 1,000   | 1,000   | 5,000   | 5,000   |
| Tartaric acid          | 500     | 500     | 1,000   | 2       | 2       | 2       |
| Sodium<br>percarbonate | 2       | 2       | 2       | 2       | 2       | 2       |
| Hydrogen<br>peroxide   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   | 5,000   |
| Actidrox®              | 5,000   | 5,000   | 5,000   | 500     | 500     | 500     |
| Detarox®AP             | 1,000   | 1,000   | 1,000   | 100     | 100     | 100     |
| Virkon S               | 1,000   | 1,000   | 1,000   | 1,000   | 1,000   | 1,000   |

Notes. A, Saprolegnia parasitica CBS 223.65.

<sup>&</sup>lt;sup>a</sup>Minimum inhibitory concentration or MLC not found at tested concentrations.



B, Saprolegnia parasitica ITT 320/15/20.

C. Saprolegnia delica ITT 290/15/15.

# 3. Our proposed solution (II)



array of natural compounds



ORIGINAL RESEARCH published: 21 February 2020 doi: 10.3389/fvets.2020.00083



Comparative Therapeutic Effects of Natural Compounds Against Saprolegnia spp. (Oomycota) and Amyloodinium ocellatum (Dinophyceae)

Perla Tedesco<sup>1</sup>, Paola Beraldo<sup>2</sup>, Michela Massimo<sup>2</sup>, Maria Letizia Fioravanti<sup>1</sup>, Donatella Volpatti<sup>2</sup>, Ron Dirks<sup>2</sup> and Roberta Galuppi<sup>1+</sup>

Slower mycelial growth of *S. parasitica* and *S. delica* strains recorded at 24h for all tested compounds at a concentration of 0.1 mM.

2'4'-Dihydroxychalcone slowed down mycelial growth at

 $0.01 \text{ mM} (2.4 \mu \text{g/ml}).$ 

MICs found for:

**Tomatine** (0.1mM = 99.4  $\mu$ g/ml)

**Piperine** (0.25 mM =  $71.3 \mu g/ml$ )

Plumbagin (0.25 mM = 47  $\mu$ g/ml)

| Compounds               | MIC<br>mM (μg/ml)    |  |  |
|-------------------------|----------------------|--|--|
| 2',4'-Dihydroxychalcone | >0.1                 |  |  |
| 7-Hydroxyflavone        | >0.1                 |  |  |
| Camphor (1R)            | >0.25                |  |  |
| Diallyl sulfide         | >0.25                |  |  |
| Esculetin               | >0.1                 |  |  |
| Eucalyptol              | >0.1                 |  |  |
| Palmatine chloride      | >0.1                 |  |  |
| Piperine                | 0.25 (71.335)        |  |  |
| Plumbagin               | 0.25 (47.045)        |  |  |
| Sclareolide             | >0.25                |  |  |
| Tomatine                | 0.1 (99.4)           |  |  |
|                         | (only for S. delica) |  |  |
| Umbelliferone           | >0.25                |  |  |
| Usnic acid              | >0.25                |  |  |

Inhibition of aerial mycelium (Camphor, Diallyl Sulfide, Umbelliferone and Sclareolide)



**d** control





# 3. Our proposed solution (III)



array of synthetic compounds

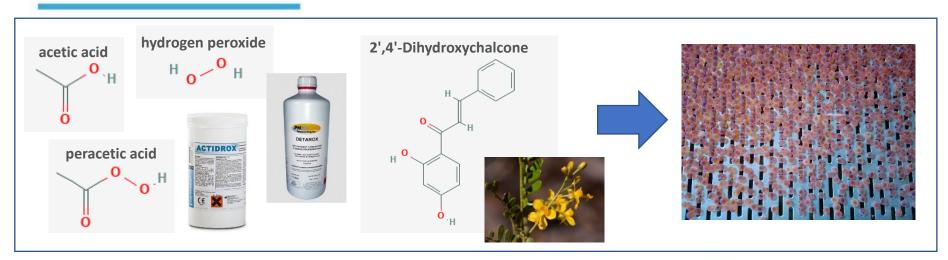


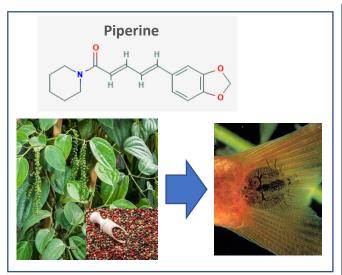
Zinc pyrithione and S. parasitica after 6 days

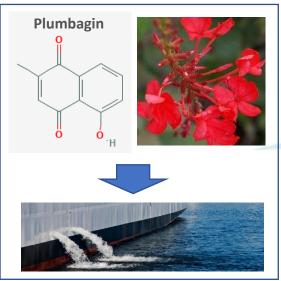
- MICs determined for 15 out of 35 compounds examined
- antifungals commonly used in human and veterinary medicine included mainly for comparative effectiveness (potential antimicrobial resistance issues)
- most of the compounds considerably slowed down radial mycelial growth and/or inhibited the development of aerial mycelium also after 6 days

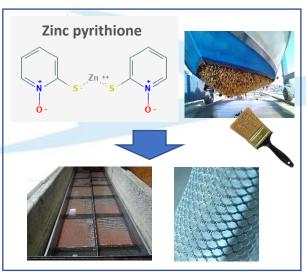
| COMPOUNDS                                      | MIC            | Note about protocol I test                                                                       | MLC                                    |
|------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------|----------------------------------------|
|                                                | mM (μg/ml)     |                                                                                                  | mM (μg/ml)                             |
| ZINC PYRITHIONE                                | 0.01 (3.197)   |                                                                                                  | >0.25                                  |
| CLOTRIMAZOLE                                   | 0.1 (34.484)   | After 6 days radial mycelial growth was<br>considerably slowed down at 0.01 mM<br>(3.4484 µg/ml) | 0.1 (34.484)<br>only for strain<br>320 |
|                                                |                |                                                                                                  | 0.25<br>(86.21)only<br>for strain CBS  |
| CICLOPIROXOLAMINE                              | 0.1 (26.836)   |                                                                                                  | >0.25                                  |
| 5-CHLORO-8-<br>HYDROXYQUINOLONE<br>(CLOXYQUIN) | 0.1 (17.96)    |                                                                                                  | >0.25                                  |
| DEQUALINIUM CHLORIDE                           | 0.1 (52.76)    |                                                                                                  | not tested                             |
| ECONAZOLE NITRATE                              | 0.1 (44.47)    |                                                                                                  | 0.25 (111,175                          |
| SULCONAZOLE NITRATE                            | 0.1 (46.076)   |                                                                                                  | 0.25 (115,19)                          |
| TRICLOSAN                                      | 0.1 (28.954)   |                                                                                                  | 0.1 (28,954)                           |
| BUTYL 4-                                       |                | After 6 days radial mycelial growth was                                                          | >0.25                                  |
| HYDROXYBENZOATE                                |                | considerably slowed down at 0.1 mM                                                               |                                        |
| (BUTYL PARABEN)                                |                | (19.424 μg/ml)                                                                                   |                                        |
| BUTOCONAZOLE                                   | 0.25           | After 6 days, radial mycelial growth was                                                         | 0.25 (102,945                          |
|                                                | 1 '            | considerably slowed down at 0.1 mM                                                               |                                        |
|                                                |                | (14.178 μg/ml) for strains CBS and 290                                                           |                                        |
|                                                | 0.1 (41.178)   |                                                                                                  |                                        |
|                                                | for strain 320 | 1                                                                                                |                                        |
| BRONOPOL.                                      | 0.25 (49.995)  | After 6 days radial mycelial growth was                                                          | >0.25                                  |
| BRONOI OL                                      | 0.23 (47.773)  | considerably slowed down at 0.25 mM                                                              | 70.23                                  |
|                                                | (only for      | (49.995 μg/ml) for strains CBS and 320                                                           |                                        |
|                                                | strain 290)    |                                                                                                  |                                        |
|                                                | Strain 250)    |                                                                                                  |                                        |
| CLIMBAZOLE                                     | 0.25 (73.19)   |                                                                                                  | >0.25                                  |
| HEXETIDINE                                     | 0.25 (84.905)  | After 6 days radial mycelial growth was                                                          | 0.25 (84.905)                          |
|                                                |                | considerably slowed down at 0.25 mM                                                              |                                        |
|                                                | (only for      | (84.905 μg/ml) for strains 290 and 320                                                           |                                        |
|                                                | CBS strain)    |                                                                                                  |                                        |
| TETRAMETIYLTHIURAM                             | 0.25 (60.11)   | After 6 days radial mycelial growth was                                                          | 0.25 (60.11)                           |
|                                                | 0.23 (00.11)   | considerably slowed down at 0.1 mM                                                               | 0.25 (60.11)                           |
| DISULFIDE (THIRAM)                             |                | (24.044 µg/ml)                                                                                   |                                        |
| UNDECYLENIC ACID                               | 0.25 (46.07)   | 27.077 μg/IIII)                                                                                  | 0.25 (46.07)                           |




|       | ds       |
|-------|----------|
| 5     | compound |
| ontro | od       |
| ပ     | JMC      |
|       | $\aleph$ |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |
|       |          |


|           | MOLECULE NAME                           | MIC (mg/L or μl/L)                  | MLC (mg/L or μl/L)                      | PRICE (€/mg or €/μl) |
|-----------|-----------------------------------------|-------------------------------------|-----------------------------------------|----------------------|
| spunodwoo | MALACHITE GREEN                         | 5                                   | 5                                       | banned               |
|           | FORMALIN                                | 170                                 | not tested                              | 0.000003             |
| COU       | COPPER SULFATE                          | 250                                 | 1000 (5000 strains 320 and 290)         | 0,00002              |
|           | ACETIC ACID                             | 250                                 | 250 (500 strains 320 and 290)           | 0.00001 (Merck)      |
|           | IODOACETIC ACID                         | 250 (S. parasitica) 100 (S. delica) | 50 (S. parasitica) 100 (S. delica)      | 0.00251 (Merck)      |
|           | ACTIDROX®                               | 5000                                | 500                                     | 0.000024 (Farmec)    |
|           | DETAROX® AP                             | 1000                                | 100                                     | 0.000003 (Perdomini) |
|           | BENZOIC ACID                            | 100                                 | 250                                     | 0.00009 (Merck)      |
|           | PIPERINE                                | 71.335                              | not tested                              | 0.010 (Merck)        |
|           | PLUMBAGIN                               | 47.045                              | not tested                              | 0.370 (Santa Cruz)   |
|           | TOMATINE                                | 99.4 (S. delica)                    | not tested                              | 4.613 (Merck)        |
|           | 2'4'-DIHYDROXYCHALCONE                  | 24.02 (48h, S. parasitica)          | not tested                              | 0.255 (Santa Cruz)   |
|           | ZINC PYRITHIONE                         | 3.197                               | not determined                          | 0.018 (Merck)        |
|           | CLOTRIMAZOLE                            | 34.484                              | 34.484 (strain 320); 86.21 (strain CBS) | 0.019 (Merck)        |
|           | CICLOPIROXOLAMINE                       | 26.836                              | not determined                          | 0.047 (Santa Cruz)   |
|           | 5-CHLORO-8-HYDROXYQUINOLONE (CLOXYQUIN) | 17.96                               | not determined                          | 0.0004 (Merck)       |
|           | DEQUALINIUM CHLORIDE                    | 52.76                               | not tested                              | 0.141 (Merck)        |
|           | ECONAZOLE NITRATE                       | 44.47                               | 111.175                                 | 0.009 (Merck)        |
|           | SULCONAZOLE NITRATE                     | 46.076                              | 115.19                                  | 0.070 (Santa Cruz)   |
|           | TRICLOSAN                               | 28.954                              | 28,954                                  | 0.062 (Merck)        |
|           | BUTYL 4-HYDROXYBENZOATE (BUTYL PARABEN) | 48.56                               | not determined                          | 0.0004 (Merck)       |
|           | BUTOCONAZOLE                            | 102.945 (41.178 strain 320)         | 102.945                                 | 0.384 (Santa Cruz)   |
|           | BRONOPOL                                | 49.995 (S. delica)                  | not determined                          | 0.219 (Merck)        |
|           | CLIMBAZOLE                              | 73.19                               | not determined                          | 0.014 (Santa Cruz)   |
|           | HEXETIDINE                              | 84.905 (strain CBS)                 | 84.905                                  | 0.024 (Santa Cruz)   |
| ww.       | TETRAMETIYLTHIURAM DISULFIDE (THIRAM)   | 60.11                               | 60.11                                   | 0.003 (Merck)        |
|           | UNDECYLENIC ACID                        | 46.07                               | 46.07                                   | 0.030 (Merck)        |


## 4. Expected benefits for the industry


ParaFishControl

Good candidates:







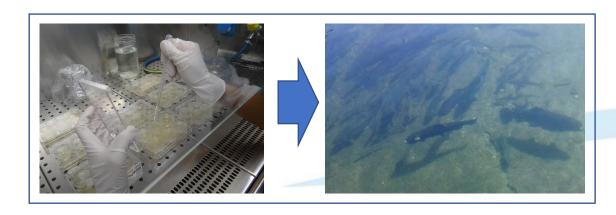




### 5. Current status, next steps and conclusions



#### **Current status:**


In vitro screening completed

#### **Suggested next steps:**

Further investigations needed to define toxicity, persistence and bioaccumulation potential

Development of selected compounds from lab to farm level:

- In vitro-reactive agents further tested in in vivo trials on the target fish species
- Assessment of doseresponse and optimal exposure conditions



#### **Conclusions:**

The development of effective alternative products and their use within IPMS will contribute to increase the productivity and sustainability of aquaculture activities.



# Thank You



Perla Tedesco

perla.tedesco@unibo.it



