Vaccines for *Philasterides dicentrarchi*

ParaFishControl Workshop “Mediterranean Fish Parasite Management Strategies”

Porto, 10th September 2019

Jesús Lamas,

University of Santiago de Compostela, Spain
Table of Contents

1. Challenge and impact in the industry
2. Our approach – Our team
3. Our proposed solution
4. Our solution vs currently employed solutions
5. Expected benefits for the industry
6. Status and next steps
7. Conclusions
Challenge and Impact

➢ Challenge

- *Philasterides dicentrarchi* has been reported to cause infections in several cultured fish species worldwide.

➢ Impact

- To date, there is no treatment available against scuticocociliatosis.
Our approach and our team

• The University of Santiago de Compostela has generated a vaccine, using the whole parasite as antigen

• The vaccine can induce 100% protection in turbot against the homologous serotype. At present, turbot farms are using autovaccines as a preventive measure

<table>
<thead>
<tr>
<th>Group</th>
<th>FACTORS</th>
<th>Survival (%)</th>
<th>Mean time to death (days)*</th>
<th>Serum antibody levels (absorbance at 492 nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cilates ml⁻¹</td>
<td>Formalin (%)</td>
<td>adjuvant (%)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10⁶</td>
<td>0.2</td>
<td>50</td>
<td>100<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>10⁵</td>
<td>0.1</td>
<td>70</td>
<td>83<sup>b</sup></td>
</tr>
<tr>
<td>3</td>
<td>10⁶</td>
<td>0.05</td>
<td>90</td>
<td>98<sup>a</sup></td>
</tr>
<tr>
<td>4</td>
<td>10⁵</td>
<td>0.1</td>
<td>70</td>
<td>94<sup>ab</sup></td>
</tr>
<tr>
<td>5</td>
<td>10⁴</td>
<td>0.2</td>
<td>90</td>
<td>44<sup>c</sup></td>
</tr>
<tr>
<td>6</td>
<td>10⁴</td>
<td>0.05</td>
<td>90</td>
<td>44<sup>c</sup></td>
</tr>
<tr>
<td>7</td>
<td>10⁶</td>
<td>0.05</td>
<td>50</td>
<td>98<sup>a</sup></td>
</tr>
<tr>
<td>8</td>
<td>10⁴</td>
<td>0.2</td>
<td>50</td>
<td>67<sup>bd</sup></td>
</tr>
<tr>
<td>9</td>
<td>10⁶</td>
<td>0.2</td>
<td>90</td>
<td>100<sup>a</sup></td>
</tr>
<tr>
<td>10</td>
<td>10⁴</td>
<td>0.05</td>
<td>50</td>
<td>84<sup>b</sup></td>
</tr>
<tr>
<td>11</td>
<td>10⁴</td>
<td>0.2</td>
<td>50</td>
<td>34<sup>ce</sup></td>
</tr>
<tr>
<td>12</td>
<td>10⁴</td>
<td>0.05</td>
<td>70</td>
<td>28<sup>e</sup></td>
</tr>
<tr>
<td>13</td>
<td>10⁴</td>
<td>0.2</td>
<td>90</td>
<td>58<sup>cd</sup></td>
</tr>
</tbody>
</table>

* This table represents our approach and our team's results in a controlled environment.
Our approach and our team

- **Weaknesses of the current vaccine**
- **To generate the antigen, the ciliate has to be passed through fish routinely**
- **The vaccine do not protect or protects partially against heterologous serotypes**
Our proposed solution (I)

USC has identified three different *P. dicentrarchi* phenotypes and serotypes

![Tree diagram showing the relationships between different serotypes and phenotypes.]

Turbot immune serum, 1:25.

<table>
<thead>
<tr>
<th>STRAIN</th>
<th>15 min</th>
<th>30 min</th>
<th>60 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>C1</td>
<td>99%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>D2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>D3</td>
<td>96.50%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>I1</td>
<td>96%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>P1</td>
<td>50%</td>
<td>50%</td>
<td>50%</td>
</tr>
<tr>
<td>S1</td>
<td>95%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
Our proposed solution (II)

• Solutions to the problem:
 • To produce a vaccine containing a mix of ciliates from different serotypes as antigens

• Weaknesses of this solution:
 • Ciliates have to be passed through fish before being used as antigen
Our proposed solution (III)

• Solutions to the problem:
 • To generate an universal vaccine against *P. dicentrarchi* based on recombinant proteins. The vaccine would contain antigens from the main serotypes

• Main challenge:
 • To identify the protective antigens
Expected benefits for the industry

• Commercialization of a vaccine against *P. dicentrarchi* that could be produced anywhere

• Protect fish against *P. dicentrarchi* infections in fish farms
Current status and next steps

- USC has identified three families of proteins that are good candidates to be used as antigens in a vaccine:
 - Variant-specific surface proteins
 - Leishmanolysins
 - ABC transporters

- Current situation:
- USC is testing these antigens in vaccines
Conclusions

• Turbot farmers are using autovaccines against *P. dicentrarchi*

• This vaccine protects against the homologous serotype

• Three *P. dicentrarchi* serotypes have been identified by the USC

• USC propose to generate an universal vaccine against *P. dicentrarchi* based on recombinant proteins.

• Several antigens candidates are being produced and tested in fish vaccines
Thank You

ParaFishControl

Jesús Lamas
jesus.lamas@usc.es